Report Summary

The goal of Project 2.5i.4 is to develop tools and frameworks that help to characterise the risks posed to the linked Great Barrier Reef (GBR) social-ecological system due to the effects of climate change. Recent achievements towards this goal include:

- A report describing the implementation of a decision support framework for the inshore coral reefs between Townsville and Cooktown that enables the envelope of future bleaching risks to be mapped as a function of ‘local’ land management imperative and ‘global’ warming scenarios [AIMS].
- Publication of two peer-reviewed journal articles describing the synergistic linkage between water quality and coral bleaching susceptibility [AIMS].
- Publication of a peer-reviewed journal article describing the suite of cellular mechanisms underpinning the warm-water breakdown of the coral-algae endosymbiosis [AIMS].
- The continued development of conceptual model describing the relationship between climate-change related damage to reef condition and its likely impact on tourism viability [CSIRO].
- A feasibility report describing the potential for a modelling approach to capture the influence of climate change on the efficacy of land practice changes in reducing the delivery of nutrients from the Tully River into the Great Barrier Reef World Heritage Area [CSIRO].

Overall, the project is progressing well. Central Queensland University has ceased its involvement with the project for the upcoming Year 4 activities (ARP4).
Project Output / Milestones

<table>
<thead>
<tr>
<th>Targeted Activity</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submission of progress report (No. 3), which outlines:</td>
<td></td>
</tr>
<tr>
<td>a) For the inshore coral reefs between Townsville and Cooktown, model the envelope of future bleaching risks based on a range of end-of-catchment scenarios for DIN reduction [Responsible agency: AIMS].</td>
<td></td>
</tr>
<tr>
<td>b) Submission of final socio-economic report [CQU].</td>
<td>10 June 2009</td>
</tr>
<tr>
<td>c) Convert the conceptual tourism model developed in Milestone 2 into a prototype Bayesian Belief Network [CSIRO].</td>
<td></td>
</tr>
<tr>
<td>d) Scope the feasibility of developing a model framework to assess the impacts of climate change effects and land practice changes on the delivery of nutrients from the Tully River into the Great Barrier Reef World Heritage Area [CSIRO].</td>
<td></td>
</tr>
<tr>
<td>e) Final summary of communication activities undertaken through the course of Year 3 of project (2008/2009) [AIMS, CSIRO, CQU].</td>
<td></td>
</tr>
</tbody>
</table>

Project Results

Results achieved for this milestone

- a) For the inshore coral reefs between Townsville and Cooktown, model the envelope of future bleaching risks based on a range of end-of-catchment scenarios for DIN reduction [AIMS].

The above mentioned technical report (Attachment 1) highlights that a major water quality program effective in reducing ambient dissolved inorganic nitrogen (DIN) loadings could decrease bleaching probability across the whole range of temperatures predicted for the inshore Great Barrier Reef by the year 2100. Indeed, for the most ‘at risk’ inshore areas, the potential magnitude of this improvement has been shown to be equivalent to ~2.0°C in relation to the upper thermal bleaching threshold; though in this case, a potentially cost-prohibitive reduction in end-of-river DIN of >30-70% would be required. Integrated socio-economic modelling will be required to understand (optimise) the alternate tradeoffs that the new modelling framework facilitates. Whereas there is hope, if not confidence, that adaptation of the coral zooxanthellae partnership or composition shifts towards a more thermally-tolerant suite of coral species could keep coral reef ‘resistance’ ahead of rising temperatures, regional-scale reductions in ambient DIN loads are amenable to management, and therefore represent a rational strategy for ameliorating climate change effects on coral reefs. Importantly, this fact reinforces the crucial role of ‘local’ land management strategies to ‘buy time’ for the coral-zooxanthellae endosymbiosis and the numerous goods and services for which it is directly (or indirectly) responsible.
b) Submission of final socio-economic report [CQU].

This report was delivered in full during milestone reporting period 2 – see January 2009 milestone report. Central Queensland University researchers are now in the process of developing project relevant manuscripts for peer-review and publication.

c) (i) Convert the conceptual tourism model developed in milestone reporting period 2 into a prototype Bayesian Belief Network [CSIRO]; and (ii) Scope the feasibility of developing a model framework to assess the impacts of climate change effects and land practice changes on the delivery of nutrients from the Tully River into the Great Barrier Reef World Heritage Area [CSIRO].

See Attachment 2: Gordon, I. and Thomas, C. (2009) Project 2.5i.4 Milestone Report to the Marine and Tropical Sciences Research Facility (MTSRF) on conversion of the conceptual model developed in milestone reporting period 2 into a prototype Bayesian Belief Network. 10 June 2009. Reef and Rainforest Research Centre Limited, Cairns.

Explanation of Activity Changes

There are no substantive activity changes to report.

Problems and Opportunities

Central Queensland University (via the directions of John Rolfe) has decided to cease involvement with Project 2.5i.4 for the upcoming Year 4 activities. It is envisaged that the CSIRO with utilise the CQU funding component to enhance progress of their tourism model. CQU would like to stay involved in future discussions with regard to a second round of MTSRF funding (July 2010 onwards).
Communications, Major Activities or Events

Manuscripts published:

Workshops / Meetings:

Project Meeting # 10, convened during 2009 MTSRF Annual Conference (April 2009)

- Attendees: Colette Thomas (CSIRO), Iain Gordon (CSIRO), Scott Wooldridge (AIMS), Paul Marshall (GBRMPA), Roger Beeden (GBRMPA).
- Agenda: To introduce Roger Beeden (GBRMPA) to the team members and research themes of Project 2.5i.4.
- Outcomes: Discussed the potential for the GBRMPA to provide new funding for ‘experimental testing’ of the water quality / coral bleaching synergism.

Project Meeting, CSIRO (May 2009)

- Attendees: Colette Thomas (CSIRO), Iain Gordon (CSIRO), Scott Wooldridge (AIMS), Paul Marshall (GBRMPA), Roger Beeden (GBRMPA).
- Agenda: Extension of project objectives to include consideration of climate change impacts on commercial/recreational fisheries of the Great Barrier Reef.
- Outcomes: General discussion about the underpinning science of Project 2.5i.4. Agreement to scope the feasibility of fisheries impact model for Year 4 (ARP4).
Managing local water quality to help combat climate change impacts on the Great Barrier Reef, Australia

Scott A. Wooldridge
Australian Institute of Marine Science, Townsville

An Australian Government Initiative

Australian Government
Department of the Environment,
Water, Heritage and the Arts

Supported by the Australian Government's Marine and Tropical Sciences Research Facility
Project 2.5i.4 Tools to support resilience-based management in the face of climate change
Contents

List of Figures .. ii
Acronyms Used In This Report ... ii
Acknowledgements .. iii

Introduction .. 1
Study site ... 2
Modelling the beneficial impact of catchment management in *lowering* the enriching impact of flood plume waters on inshore reefs ... 3
Modelling the beneficial impact of catchment management in *raising* the upper thermal bleaching thresholds of inshore reefs .. 4
Results and discussion ... 4
Concluding comments .. 6
References .. 15
List of Figures

Figure 1: Predicted increase in SST (°C) for the Great Barrier Reef in response to a ‘mid-range’ IPCC warming scenario ...7

Figure 2: Schematic representation of trends in sea temperatures (solid line) and ‘resistance’ to coral bleaching (dotted lines) ...8

Figure 3: Regional-scale coral bleaching analysis on the...8

Figure 4: (a) Quantitative linkage between upper thermal bleaching limits (°C) and the degree of exposure to nutrient enriched terrestrial waters. (b) Marginal (bar) and cumulative (line) increase in coral bleaching threshold (°C) across the (normalised) inshore DIN-enrichment gradient.............9

Figure 5: Conceptual modelling framework that enables the impact of ‘local’ (viz. water quality) and ‘global’ (viz. CO₂ / temperature reduction) management strategies to be assessed in terms of their joint (conditional) potential to reduce the future likelihood of mass coral bleaching on the Great Barrier Reef ...10

Figure 6: DIN export concentrations as a function of the proportion of fertilised land-use (LUF) in selected GBR ...10

Figure 7: The Great Barrier Reef and its catchments...11

Figure 8: Flood plume (runoff:seawater) dilution rates within the GBR lagoon for a 75th percentile flood event ...11

Figure 9: MODIS image of the 2005 summer flood event on the central GBR with representative water quality measurements as previously sampled by Devlin et al. 2001 ..12

Figure 10: Simulated increased in the upper thermal bleaching limits (°C) of inshore corals due to specified (uniform percentage) reductions in end-of-river DIN loading for the numerous basins that drain the GBR catchment13

Acronyms Used In This Report

AEP.............. Annual exceedance probability
AIMS Australian Institute of Marine Science
CO₂.............. Carbon dioxide (chemical formula)
DIN.............. Dissolved inorganic nitrogen
DIP.............. Dissolved inorganic phosphorous
GBR.............. Great Barrier Reef
IPCC Intergovernmental Panel on Climate Change
LUF.............. Land use factor
MODIS............ Moderate-resolution Imaging Spectroradiometer
MPA.............. Marine Protection Area
SST(s)............ Sea-surface temperature(s)
UTBT............ Upper thermal (coral) bleaching threshold
Acknowledgements

I thank Ray Berkelmans (AIMS) for making available the data that underpins the time-integrated bleaching thresholds for the inshore reefs of the Great Barrier Reef (see Figure 4a).
Introduction

The waters of the Great Barrier Reef (GBR) are warming and are predicted to continue to do so at an accelerating rate throughout the 21st Century (Figure 1; IPCC 2001). The rising temperatures are predicted to cause increased coral bleaching, coral mortality and biodiversity depletion that will have serious consequences for reef biodiversity, ecology, appearance and dependent recreational use and economic activity (Hoegh-Guldberg 1999; Done et al. 2003; Hoegh-Guldberg and Hoegh-Guldberg 2004; Wooldridge et al. 2005). The severity of the problem is highlighted by predictions that the inshore reef areas of the central GBR may be severely set back or even transformed to a non-coral dominated state by as early as 2030 (Wooldridge et al. 2005).

As a general rule, coral bleaching is triggered when sea surface temperatures (SSTs) exceed the ‘normal’ mean summer maximum temperatures by 1-2°C for more than a few days (Hoegh-Guldberg 1999). For most tropical shallow-water coral reefs this results in an upper thermal bleaching threshold (UTBT) of ~30°C. However, emerging research highlights the fact that the UTBT for most corals is far from static (Figure 2). In particular, it has been demonstrated that corals which regularly experience poor water quality are less ‘resistant’ to thermal stress, such that upon exposure to sub-optimal temperatures (>28°C) they display higher bleaching sensitivity (per unit increase in SST) (Figure 3; Wooldridge and Done 2009). Explanation for the negative impact of poor water quality has centered on the potential for elevated levels of dissolved inorganic nitrogen (DIN) to enhance the damaging cellular processes that underpin the thermal bleaching process (Wooldridge 2009a; Wooldridge and Done 2009). Support for this interpretation is found in the strong quantitative relationship that exists between the UTBT of inshore corals on the GBR and the degree of exposure to DIN-rich flood-plume (terrestrial) water (Figure 4a; Wooldridge 2009b). In this case, the variable water quality regime spans ~2°C variation in the UTBT, with the marginal rate of increase (°C) being significantly higher at the lowest DIN exposure levels, i.e. highest water quality (Figure 4b). This empirical result aligns well with the theoretical prediction that the physiological tolerance of symbiotic corals to thermal stress is maximal when external seawater DIN availability falls to levels that cause the intracellular algal symbiont (‘zooxanthellae’) population to become nitrogen (i.e. growth) limited within the coral host (Wooldridge and Done 2009).

The synergistic linkage between water quality and coral bleaching thresholds provides concrete evidence for the oft-expressed belief that improved coral reef management will increase regional scale resilience of coral reefs to global climate change (Bellwood et al. 2004; Marshall and Schuttenberg 2006; McCook et al. 2007). Moreover, the linkage enables a modelling framework to be outlined for the inshore reefs of the GBR in which the envelope of future bleaching risks can be mapped as a function of ‘local’ land management imperative and ‘global’ warming scenarios (Figure 5; Wooldridge 2009b). In this case, alternative catchment management strategies can be tested for their attendant level of benefit in offsetting future SST increases. The potential ~2°C improvement in UTBT for the most-disturbed inshore GBR reef sites appears significant given that mid-range warming scenarios have SSTs on the GBR increasing by ~2-3°C by 2100 (Figure 1; IPCC 2001).

It has been estimated that the post-European development of the GBR catchment has resulted in an approximate 4-10 fold (average) increase in DIN loads entering the GBR lagoon (Furnas 2003; Wooldridge et al. 2006). The majority of this DIN is sourced from intensely fertilised agricultural lands (viz. sugarcane, banana plantations) that tend to be located within close proximity of the coast (Figure 6; Furnas 2003; Brodie et al. 2003). Since excessive fertiliser application rates and poor land-use practices dominate the increasing DIN response, landscape nutrient budget models highlight the significant capacity for effective management initiatives to aid remediation; albeit at considerable social and economic costs to local farming communities (Armour et al. 2007; Roebeling et al. 2007).
In this report, I endeavor to simulate the beneficial impact of end-of-catchment DIN reductions (10%, 30%, 50% and 70%) in raising the bleaching resistance (i.e. the UTBT, °C) of inshore reefs between Townsville and Cooktown. Such regional-scale information is vital for helping to identify management strategies that delay, possibly even prevent, the imminent mortality risk and loss in resilience that currently characterises these inner to mid-shelf reefs of the GBR.

Study site

The reefs and other ecosystems of the GBR are embedded on a shallow coastal shelf that varies in width from 50 km in the north to over 200 km in the south (Figure 7). Water depths increase across the shelf to a maximum of 100 m before the shelf break and average about 35 m. The matrix of reef structures on the outer margins of the shelf creates an incomplete barrier to the deep oceanic waters of the Coral Sea. The open water body contained between this outer barrier and the coast is commonly known as the GBR lagoon. The shallowness and width of the GBR lagoon plays an important role in the retention of imported material; distinguishing the GBR system from many other Indo-Pacific coral reefs surrounded by deeper water. The nutrients and sediments held and recycling in the inner-shelf region of the GBR lagoon are dominated by terrestrial sources (Furnas et al. 1995; Furnas 2003). The numerous rivers systems that drain the 423,000 km² catchment adjoining the GBR lagoon provide the primary delivery mechanism for this terrestrial material (Furnas 2003; Brodie et al. 2003).

In general, areas in the northern parts of the GBR catchment remain relatively undisturbed, with limited cropping and low cattle stocking rates (Furnas 2003; Brodie et al. 2003). As such, the dissolved nutrient and particulate matter concentrations in coastal waters of the far northern GBR are generally regarded as representative of water quality under minimally altered conditions. The central and southern regions of the GBR catchment, however, are characterised by high catchment-wide cattle stocking rates and intensive cropping activities on the coastal floodplains. River discharges from these developed catchments have elevated dissolved nutrient and particulate matter concentrations, for example, DIN concentrations in flood flow for these rivers are up to thirty times that of rivers in the northern undeveloped catchments (140-1400 µg.L⁻¹ compared to 14-70 µg.L⁻¹) (Furnas 2003).

In this study, particular attention is given to the region between Townsville and Cooktown, which includes the Burdekin, Herbert, Tully, Johnstone, Russell, Barron, Daintree, Endeavour, Jeannie and Normanby river systems. The hydrologic characteristics of these river systems (as for most of the larger GBR river systems) is defined by a sharp division between a summer wet season state, lasting a short period annually (one to eight weeks) and a prolonged dry season condition. In the dry season, little or no freshwater discharge occurs and the estuaries behave as tidal inlets with a sharp division between freshwater (salinity 0 psu) and seawater (salinity 36 psu). In the wet season, estuaries are totally river dominated with the ‘estuarine’ mixing zone (where the salinities range from 0 to 36 psu) lying outside the river mouth on the continental shelf. A salt wedge exists but lies outside the river itself as the river flushes fresh throughout its depth profile to the sea. Hydrodynamic simulations demonstrate that after leaving the river, the ‘flood plume’ mixing zone is generally advected northwards due to a combination of coriolis force and barotropic hydrodynamics (Wolanski and van Senden 1983; King et al. 2001, 2002). The extent of cross-shelf dispersion associated with a particular flood event is affected by both discharge volume and the prevailing wind conditions.

The frequency with which the inner-shelf areas of the GBR lagoon experience plume water varies greatly with location along the GBR coast (Devin et al. 2001); reflecting the likelihood
of high intensity rainfall falling on the adjacent coast. Plumes occur in inner-shelf waters of the Wet Tropics coast (Herbert to Daintree Rivers) at least annually and often twice a year; the Dry Tropics coast, which includes the Burdekin River, produces significant plumes approximately at three- to four-year intervals; the Endeavour to Normanby Rivers on the far northern coast produce significant plumes at approximately two- to three-year intervals. The historical record shows that for large (typically monsoon-related) rainfall events, the individual river plumes often merge together and stretch over large portions of the inner-shelf areas; but rarely exceed more than 30 km from the coast (Figure 7). These large flood plumes bath inshore and some mid-shelf reef habitats in nutrient-rich water for periods of several weeks (Devlin et al. 2001; Devlin and Brodie 2005).

The initial fate of the terrestrial material that is delivered to the GBR lagoon can be understood from the flood plume sampling of Devlin et al. (2001). In the initial mixing zone, water velocity is reduced and changes in pH and salinity promote flocculation of particulate matter. Most of the river-derived particulate matter initially settles from the plume in this zone (Devlin and Brodie 2005). A remotely-sensed image (MODIS) of the 2005 summer flood event for the central GBR clearly demonstrates this depositional effect around the Burdekin River mouth (Figure 8a). Representative measurements that have previously been sampled across this depositional zone (see Devlin et al. 2001; Rodhe et al. 2005) are also plotted, demonstrating that particulate concentrations (in this case phosphorus) drop to very low levels only a few kilometres from the river mouth at salinities of 5-10 psu. Dissolved fractions in the river runoff are transported far further than the particulate fractions. For example, typical plots of DIN (and DIP) in relation to salinity within the GBR lagoon in a flood plume (Figure 8b) suggest an essentially conservative dilution process (Devlin et al. 2001; Rodhe et al. 2005). This conservative mixing behaviour for the dissolved nutrient fractions means that their range of influence may extend across hundreds of kilometres from river mouths.

Important from a biological context, the enriching impact of summer runoff events typically coincides with the period of annual maximum SSTs. Given the shallow shelf depth, and limited intrusion of cool offshore oceanic waters, the inshore SSTs of the central-northern GBR are some of the highest observed across the entire GBR; with monthly averaged summer values ~28°C (Wooldridge and Done 2004).

Modelling the beneficial impact of catchment management in lowering the enriching impact of flood plume waters on inshore reefs

Measures of phytoplankton biomass usually provide a better indicator of the nutrient status of reef waters than actual measured nutrient concentrations, since fast growing phytoplankton populations quickly respond to, and subsequently deplete, all available stocks of bio-available nutrients, resulting in localised ‘blooms’ in population densities (Edwards et al. 2003; Furnas et al. 2005). The concentration of the photosynthetic pigment Chlorophyll a, [Chl a], is the most commonly used measure of phytoplankton biomass, and hence is also oft-reported as an indicator of the eutrophication status of coastal reef waters.

Within the GBR lagoon, there exists a strong relationship between [Chl a] and the flood-plume delivery of terrestrial DIN (Wooldridge et al. 2006), which reflects the understanding that DIN-availability usually limits summer phytoplankton biomass in the coastal waters of the GBR (Furnas et al. 2005). As highlighted by Figure 8b, during the initial (several days) period before biological uptake-rates becomes significant, the concentration of DIN is directly related to the salinity of the plume water, reflecting the degree of dilution by low-nutrient shelf waters (Devlin and Brodie 2005). Recently, Wooldridge et al. (2006) utilised this conservative mixing attribute of DIN to infer the enriching impact of runoff events from the various river
systems that drain the GBR catchments – the rationale being that a given runoff:seawater dilution ratio, and broad-scale differences in [Chl a] observed between river systems, could be attributed to the end-of-catchment concentration of DIN in the discharging runoff. In this way, a decision support model (viz. ChloroSim) was developed that enables the enriching impact of river-specific flood plumes to be mapped (and varied) as a function of their (model ‘tuneable’) end-of-catchment flood concentration of DIN.

For the present study, the ChloroSim decision support model was used to map the impact of 10%, 30%, 50% and 70% reductions in end-of-catchment DIN for the Burdekin, Herbert, Tully, Johnstone, Russell, Barron, Daintree, Endeavour, Jeannie and Normanby river systems. Rather than considering the differences arising from a single event, the simulation was run across an historic thirty-year archive (1969-1998) of runoff events (King et al. 2002); the ensemble of results enabling the spatial mapping (2 km pixel resolution) of the annual exceedence probability (AEP) of specific [Chl a] threshold levels (e.g. 0.9 µg.L⁻¹, see following section).

Modelling the beneficial impact of catchment management in raising the upper thermal bleaching thresholds of inshore reefs

Previous analysis for the inshore reefs of the GBR demonstrates a strong quantitative relationship between an AEP ([Chl a] > 0.9 µg.L⁻¹) and their upper thermal bleaching threshold (Figure 4a; Wooldridge 2009b). In this study, I utilised this quantitative relationship to transpose simulated improvements in inshore water quality (viz. lowered AEP ([Chl a] > 0.9 µg.L⁻¹)) into the equivalent improvement in coral bleaching thresholds. In this way, the impact of a 10%, 30%, 50% and 70% reduction in end-of-catchment DIN was mapped as an equivalent increase (gain) in the upper thermal bleaching threshold (°C) of impacted reefs (Figure 10).

Results and discussion

The model simulations indicate that ‘local’ reductions in end-of-catchment DIN have the potential to raise the bleaching resistance of the most disturbed inshore reefs by ~2°C in SST equivalence. However, this level of improvement is conditional on relatively high levels (> 30-70%) of DIN reduction. The simulations highlight that the greatest initial gains are made on the fringes of the high DIN-enrichment areas, which reflects the higher marginal rates of improvement in bleaching resistance (°C) at the lower DIN exposure levels, i.e. areas of higher water quality (see Figure 4b). Although the successive improvement in bleaching resistance due to the each level of DIN reduction is self evident, some care is needed in the interpretation of the results, since the uniform reductions (percent) in end-of-river DIN concentrations are based on pre-existing river (flood) loads. For example, to achieve a thirty percent reduction in the end-of-river DIN concentration from a nutrient-rich river system requires a substantially larger absolute reduction in DIN (in terms of µg L⁻¹) than a thirty percent reduction from a nutrient-poor river system. Countering this fact however, is the understanding that the required effort to achieve DIN improvements becomes more difficult (and economically costly) the cleaner the river system (see e.g. Roebeling et al. 2007).

In terms of the enriching footprint of terrestrial runoff intrusions, it is important to note that the initial impact will be experienced as a short-term (days to weeks) pulse of high nutrient water, as opposed to a continuing diffuse source. However, the recycling of inorganic nutrients through pelagic food webs (e.g. via nitrification) ensures a longer-term (weeks to months) persistence of the initial enriching impact (Alongi and McKinnon 2005). Generally speaking, this ensures that the period of nutrient enrichment coincides with annual maximum (summer)
SSTs. Because phytoplankton in the water column is a strong competitor for excess DIN (Furnas et al. 2005), brief periods in which phytoplankton growth is limited are important ‘ecological windows’ for the maximum (deleterious) enrichment of benthic organisms by DIN. These windows include: (i) the early (several days) stages of a flood plume when high plume turbidity limits the light (intensity) levels needed to support rapid phytoplankton growth (Turner et al. 1990; Dagg et al. 2004; Devlin and Brodie 2005), and (ii) periods of extreme temperature that exceed optimal growth limits for the ‘bulk’ phytoplankton population, for example, in 1998 when seawater temperature was extremely high and coral bleaching occurred, low [Chl a] was observed at Sesoko Island (Okinawa, Japan) despite high concentrations of DIN; the result being explained by a temperature-dependent decrease in the growth rate of the picoplankton size fraction (Tada et al. 2003). In this way, the annual co-occurrence of flood plumes and maximum SSTs on the GBR can be understood to enhance the likelihood of dynamic nutrient enrichment of inshore coral populations.

Terrestrial runoff is not the only source of DIN that impacts upon the GBR, with periodic upwelling of deep (nutrient-rich) oceanic water often a dominating feature on the outer-shelf reefs (Andrews and Gentien 1982). Whilst field observations from elsewhere around the world confirm that reefs which are exposed to nutrient upwelling are subject to differentially enhanced thermal bleaching impacts (D’Croz et al. 2001; D’Croz and Mate 2004), the oceanic source of this DIN means that its impact remains largely outside the realm of management. It is thus important to reinforce that any perceived management influence is most strictly related to inner-shelf reef areas for which terrestrial nutrients sources are most often the dominating influence (Furnas 2003). However, a better understanding of the spatio-temporal dynamics of DIN loading across the entire GBR is necessary for identifying those areas most vulnerable to heat stress. Within the GBR, DIN loading is typically highest at coastal locations that are exposed to terrestrial runoff, lowest at mid-shelf locations, and moderate at offshore (upwelling) locations (see e.g. Sammarco et al. 1999). All things being equal, it is thus predicted that the mid-shelf reefs of the GBR should display the highest resistance to heat stress. It follows that the design of a marine protected area (MPA) network that aims to spread the risk of future bleaching impacts (sensu Done 2001; Wooldridge and Done 2004; Game et al. 2008) should differentially favour the selection of mid-shelf reefs.

Previous consideration of the role of water quality in promoting resilient (healthy) coral communities has primarily focused on the recoverability side of coral mortality events (see review by Fabricius 2005). In this case, reef locations which regularly experience good water quality (i.e. low sediment and nutrient loads) are judged favourably in term of: (i) promoting the re-establishment of disturbed reef sites with new coral recruits, due to enhanced success in the chancy process of larval arrival, settlement, post-settlement survival, and growth; and (ii) limiting the potential for faster growing seaweeds to out-compete the recovery of the surviving (remnant) corals and new coral recruits. Importantly, this recovery-side aspect of water quality complements the bleaching resistance process outlined in this study. In this way, ‘local’ management actions leading to lower DIN enrichment levels are predicted to benefit both coral survivorship and recovery in response to thermal stress (bleaching) events.

Yet, whilst promising as a beneficial mitigation (adaptation) strategy, water quality improvements alone are not the ‘silver bullet’ needed to ensure the long-term survival prospect of the inshore reefs of the GBR given the threat of climate change. Instead, they must be considered alongside ‘global’ strategies that aim to lower ocean warming rates via reduction in greenhouse gas emissions (particularly CO₂). Simple logic suggests that in order to be effective, future warming of SSTs must not exceed the potential 1-2°C gain in a coral’s thermal tolerance due to water quality improvements. Current ‘business-as-usual’ SST trajectories appear to be headed well beyond this 2°C envelope (IPCC 2001). Future work by research supported by MTSRF Project 2.5i.4 funding is aimed at identifying the envelope of ‘global’ and ‘local’ management imperative needed to maintain a healthy inshore reef complex on the GBR.
Concluding comments

This study highlights that a major water quality program effective in reducing ambient DIN loadings could decrease bleaching probability across the whole range of temperatures predicted for the inshore GBR by the year 2100. Indeed, for the most ‘at risk’ inshore areas, the potential magnitude of this improvement has been shown to be equivalent to ~2.0°C in relation to the upper thermal bleaching threshold; though in this case, a potentially cost-prohibitive reduction in end-of-river DIN of > 30-70% would be required. Integrated socio-economic modelling will be required to understand (optimise) the alternate tradeoffs that the new modelling framework facilitates. Whereas there is hope, if not confidence, that adaptation of the coral zooxanthellae partnership or composition shifts towards a more thermally-tolerant suite of coral species could keep coral reef ‘resistance’ ahead of rising temperatures, regional-scale reductions in ambient DIN loads are amenable to management, and therefore represent a rational strategy for ameliorating climate change effects on coral reefs. Importantly, this fact reinforces the crucial role of ‘local’ land management strategies to ‘buy time’ for the coral-zooxanthellae endosymbiosis and the numerous goods and services for which it is directly (or indirectly) responsible.
Figure 1: Predicted increase in SST (°C) for the Great Barrier Reef in response to a ‘mid-range’ IPCC warming scenario.
Figure 2: Schematic representation of trends in sea temperatures (solid line) and ‘resistance’ to coral bleaching (dotted lines). Anthropogenic pressures tend to reduce resistance through time (falling dotted line). Prospective mechanisms that could increase resistance (rising dotted line) include: (i) endosymbiont reshuffling (Berkelmans and van Oppen 2006), (ii) community composition shifts towards corals that can counter the bleaching response via access to stored tissue reserves (Loya et al. 2001) or heterotrophic energy sources (Borell and Bischof 2008), (iii) region-scale amelioration of poor water quality (Wooldridge and Done 2009; Wooldridge 2009b).

Figure 3: Regional-scale coral bleaching analysis on the GBR (after Wooldridge and Done 2009). Inshore coral reef areas with high runoff exposure risk are shown to correspond (in a probabilistic sense) with reefs that displayed a lower resistance to thermal stress (red zone) during the 1998 and 2002 mass bleaching events. Accumulated reef responses (observed) from within the low resistance (red zone) areas confirm the increased risk of bleaching (per unit increase in SST), and reflect an averaged lowering in upper thermal bleaching threshold of ~1.0-1.5°C.
Figure 4: (a) Quantitative linkage between upper thermal bleaching limits (°C) and the degree of exposure to nutrient enriched terrestrial waters. Coastal reef waters with high DIN-enriching impact are characterised by a higher annual exceedence probability (AEP) of [Chl a] > 0.9 µg L⁻¹. (b) Marginal (bar) and cumulative (line) increase in coral bleaching threshold (°C) across the (normalised) inshore DIN-enrichment gradient. The relationship links the greatest opportunity for improvement with the highest levels of terrestrial water quality improvement.
Figure 5: Conceptual modelling framework that enables the impact of ‘local’ (viz. water quality) and ‘global’ (viz. CO₂ / temperature reduction) management strategies to be assessed in terms of their joint (conditional) potential to reduce the future likelihood of mass coral bleaching on the Great Barrier Reef.

Figure 6: DIN export concentrations as a function of the proportion of fertilised land-use (LUF) in selected GBR catchments (after Wooldridge et al. 2006). The assumption that grazing lands contribute only one-tenth of the DIN export per area compared to fertilised cropping lands is based on a number of comparison studies summarised in Brodie and Mitchell (2005).
Figure 7: The Great Barrier Reef and its catchments.
Figure 8: Flood plume (runoff:seawater) dilution rates within the GBR lagoon for a 75th percentile flood event.
Managing local water quality to help combat climate change: GBR

Figure 9: MODIS image of the 2005 summer flood event on the central GBR with representative water quality measurements as previously sampled by Devlin et al. 2001. (a) Deposition of particulate material from the Burdekin River plume. (b) Extensive phytoplankton bloom in response to the flood plume load of dissolved inorganic nutrients from the Proserpine, O’Connell and Pioneer Rivers.
Figure 10: Simulated increased in the upper thermal bleaching limits (°C) of inshore corals due to specified (uniform percentage) reductions in end-of-river DIN loading for the numerous basins that drain the GBR catchment.
References

Project 2.5i.4 CSIRO Milestone Requirement

1. Convert the conceptual model developed in milestone reporting period 2 into a prototype Bayesian Belief Network (BBN).

In November 2008 a one-day workshop was held to develop a conceptual model capturing key relationships between reef condition and tour operator viability. An extensive review of the current state of knowledge was undertaken in the key disciplines of economics, tourism, and coral reef ecology. The conceptual model was evaluated against the findings and amended accordingly. Changes primarily reflect recent advances in current thinking in economics and tourism, the addition of detail where time constraints prevented detailed representations by participants, as well as adjustments required to accommodate the BBN modelling platform.
Since submission of the last milestone report, these changes have been finalised and the conceptual model converted into the influence diagram shown schematically in Figure 1. Before the model can be parameterised it needs to be verified by those responsible for its creation. The participants of the workshop are thus requested to review the influence diagram for accuracy and appropriateness, and are also asked to provide guidance on likely data availability for its parameterisation. Thus far the diagram has been evaluated by one of two coral reef ecology experts and all five reef tourism experts; data availability was also identified in these meetings. One data set has arrived but will require recoding before it can be used. Another data set has been flagged, but cannot be accessed until the technician returns from travels in late June 2009.

Figure 1: Schematic influence diagram of the purpose-built reef condition-tourism Bayesian Belief Network, showing linkage to models produced by MTSRF Projects 3.7.5 and 2.5i.4.
2. **Scope the feasibility of developing a model framework to assess the influence of climate change on the efficacy of land practice changes in reducing the delivery of nutrients from the Tully River into the Great Barrier Reef World Heritage Area.**

The purpose of the scoping activity was to assess the feasibility of incorporating climate change impacts on current estimates of sugar cane best management-practice (BMP) cost-effectiveness for water quality improvement in the Tully-Murray catchment into the Project 2.5i.4 BBN.

The influence of climate change on the cost effectiveness of sugar cane best management practice for water quality improvement in 2070 has been assessed by Roebeling et al. (2007). Climate change was assessed deterministically according to changes in temperature, rainfall, and CO$_2$ as projected in Cai et al. (2005). For sugar cane they found that “Climate change… [is] shown to potentially impact on the attainment of water quality targets. While climate change does not seem to affect … BMP cost-effectiveness, it may lead to a significant increase in levels of water pollutant (DIN) delivery under some climate change projections for 2070.” The report is illuminating in that it highlights key areas suitable for focus in ensuing BBN modelling work. However the report does not indicate the processes by which the projected changes in rainfall, temperature and CO$_2$ will actuate the predicted changes in BMP cost-effectiveness. Further, climate scenario projections have changed substantially since this report was produced, and these changes have substantial capacity to affect model results.

Preliminary interviews with a cane agronomist provide a different perspective on the impacts of climate change to productivity and DIN. According to the expert, current evidence suggests that by the year 2070, DIN delivery is expected to be impacted more by land practice change than by climate change. However, financial impacts are expected as a result for climate change via reduction in yield, given recent worst-case projections of reduced rainfall and higher temperatures.

It is clear that developing a model framework capable of assessing the influence of climate change on BMP cost-effectiveness in the Tully catchment is feasible and worthwhile. Key points raised during the scoping exercise include:

1. A full consideration must be undertaken of the key pathways for climate change to affect DIN delivery and productivity.
2. Climate change scenarios must represent the current state-of-the-science.
3. Analysis of the relative impact of land practice change vs. climate change will be fruitful.

The results of this scoping exercise indicate therefore that the climate change/BMP effectiveness problem is not trivial; development of a model framework is feasible given adequate resourcing.
